Keysight 33210A

10 MHz Function/Arbitrary Waveform Generator

Data Sheet

- 10 MHz Sine and Square waveforms
- Pulse, Ramp, Triangle, Noise, and DC waveforms
- Optional 14-bit, 50 MSa/s, 8K point Arbitrary Waveform Generator
- AM, FM, and PWM modulation types
- Linear & logarithmic sweeps and burst operation
- 10 mVpp to 10 Vpp amplitude range
- Graph mode for visual verification of signal settings
- Connect via USB, GPIB and LAN
- Fully compliant to LXI Class C specification

Uncompromising performance at an affordable price

The Keysight Technologies, Inc. 33210A function/arbitrary waveform generator is the latest addition to the 332XX family. Waveforms are generated using direct digital synthesis (DDS) technology which creates stable, accurate low distortion sine waves as well as square waves with fast rise and fall times up to 10 MHz and linear ramp waves up to 100 kHz. For user defined waveforms, Option 002 provides 14-bit, 50 MSa/s 8K point arbitrary waveform generation.

Pulse generation

The 33210A can generate variable-edgetime pulses up to 5 MHz. With variable period, pulse width, and amplitude the 33210A is ideally suited to a wide variety of applications requiring a flexible pulse signal.

Custom waveform generation (Option 002)

The optional 8K point arbitrary waveform generator (Option 002) can be used in the 33210A to generate complex custom waveforms. With 14-bit resolution, and a sampling rate of 50 MSa/s, the 33210A gives you the flexibility to create the waveforms you need. It also lets you store up to four waveforms in nonvolatile memory.

The Keysight IntuiLink arbitrary waveform software allows you to easily create, edit, and download complex waveforms using the waveform editor. Or you can capture a waveform using IntuiLink for Oscilloscopes and send it to the 33210A for output. To find out more about IntuiLink, visit www.keysight.com/find/intuilink Easy-to-use functionality
Front-panel operation of the 33210A is
straight-forward and user friendly. You can
access all major functions with a single
key or two. The knob or numeric keypad
can be used to adjust frequency, amplitude, offset, and other parameters. You
can even enter voltage values directly in
Vpp, Vrms, dBm, or as high and low levels.
Timing parameters can be entered in Hertz
(Hz) or seconds.

Internal AM, FM, and PWM modulation make it easy to modulate waveforms without the need for a separate modulation source. Linear and logarithmic sweeps are also built in, with sweep rates selectable from 1 ms to 500 s. Burst mode operation allows for a user-selected number of cycles per trigger. GPIB, LAN, and USB interfaces are all standard, plus you get full programmability using SCPI commands.

External frequency reference (Option 001)

The 33210A external frequency reference lets you synchronize to an external 10 MHz clock, to another 33210A, or to a Keysight 33220A or Keysight 33250A. Phase adjustments can be made from the front panel or via a computer interface, allowing precise phase calibration and adjustment.

Waveforms	
Standard	Sine, Square, Ramp,
	Triangle, Pulse, Noise, DC
Built-in arbitrary wave-	Exponential rise,
forms (available only	Exponential fall, Negative
with Option 002 ARB)	ramp, Sin(x)/x, Cardiac

ramp, om(x)/	n, oui	uiac
eristics		
(relative to 1 l	kHz)	
		0.1 dB
		0.2 dE
5 IVIHZ TO TU I	VIHZ	0.3 dE
	\ 1	Vnn
		dBc
	_ <u>S</u> (ubc
	lB/or	rtave
-70 ubc + 0 t	יט / טנ	lave
–115 dBc / H	z, typ	ical
1 mHz to 10 MHz		
20 ns		
40% to 60% (1	to 10	MHz)
1% of period	+ 5 n:	S
1 ns + 100 pp	m of	period
''		•
1 mHz to 100	kHz	
		put
1 mHz to 5 M	Hz	
40 ns minimum		
10 ns resoluti	on	
< 2%		
300 ps +		
0.1 ppm of pe	riod	
	1 mHz to 10 M (relative to 1 M) (relative to 1 M	1 mHz to 10 MHz (relative to 1 kHz) < 100 kHz 100 kHz to 5 MHz 5 MHz to 10 MHz < 1 Vpp

Measurement Characteristics (continued)

8K-point arbitrary waveform generator	
(Option 002)	
Frequency range	1 mHz to 3 MHz
Waveform length	2 to 8 k points
Amplitude resolution	14 bits (including sign)
Sample rate	50 MSa/s
Min. rise/fall time	70 ns typical
Linearity	< 0.1% of peak output
Settling time	< 500 ns to 0.5% of final
	value
Jitter (RMS)	6 ns + 30 ppm
Non-volatile memory 4 waveforms	

Common charact	eristics		
Frequency			
Accuracy 5	± (10 ppm + 3 pHz)		
	in 90 days		
	± (20 ppm + 3 pHz)		
	in 1 year		
Resolution	1 μHz (internal)		
	1 mHz (user)		
Amplitude			
Range	10 mVpp to 10 Vpp into 50 Ω		
	20 mVpp to 20 Vpp into		
	open circuit		
Accuracy 1, 2	± 2% of setting		
(at 1 kHz)	± 1 mVpp		
Units	Vpp, Vrms, dBm		
Resolution	3 digits		
DC offset			
Range	± 5 V into 50 Ω		
(peak AC + DC)	± 10 V into open circuit		
Accuracy 1, 2	± 2% of offset setting		
	\pm 0.5% of amplitude		
	± 2 mV		
Resolution	3 digits		
Main output			
Impedance	50 Ω typical		
Isolation	42 Vpk maximum to earth		
Protection	Short-circuit protected,		
	overload automatically		
	disables main output		

External frequency reference		
(Option 001)		
Rear panel input		
Lock range	10 MHz ± 500 Hz	
Level	100 mVpp to 5 Vpp	
Impedance	1 kΩ, typical	
Lock time	< 2 seconds	
Rear panel output		
Frequency	10 MHz	
Level	632 mVpp	
	(0 dBm), typical	
Impedance	50 Ω, typical	
	AC coupled	
Phase offset		
Range	+360° to -360°	
Resolution	0.001°	
Accuracy	20 ns	

Modulation	
AM	
Carrier waveforms	Sine, Square
Source	Internal/External
Internal modulation	Sine, Square, Ramp,
	Triangle, Noise, Arb 7
	(2 mHz to 20 kHz)
Depth	0.0% to 120.0%
FM	
Carrier waveforms	Sine, Square
Source	Internal/External
Internal modulation	Sine, Square, Ramp,
	Triangle, Noise, Arb 7
	(2 mHz to 20 kHz)
Deviation	DC to 5 MHz
PWM	
Carrier waveforms	Pulse
Source	Internal/External
Internal modulation	Sine, Square, Ramp,
	Triangle, Noise, Arb 7
	(2 mHz to 20 kHz)
Deviation	0% to 100% of pulse width

(for AM, FM, PWM)	
Voltage range	± 5 V full scale
Input impedance	5 kΩ typical
Bandwidth	DC to 20 kHz
Sweep	
Waveforms	Sine, Square, Ramp
Туре	Linear or Logarithmic
Direction	Up or Down
Sweep time	1 ms to 500 s

Single, External or Internal

Falling edge of sync

signal (programmable frequency)

External modulation input

Trigger source

Marker

Burst ⁶	
Waveforms	Sine, Square, Ramp
Туре	Counted (1 to 50,000
	cycles), Infinite, Gated
Start/stop phase	+360° to -360°
Internal period	1 μs to 500 s
Gate source	External trigger
Trigger source	Single, External or Internal

	-	
Trigger characteristics		
Trigger input		
Input level	TTL compatible	
Slope	Rising or Falling,	
	selectable	
Pulse width	> 100 ns	
Input impedance	> 10 kΩ, DC coupled	
Latency	< 500 ns	
Jitter (rms)	6 ns (3.5 ns for pulse)	
Trigger output		
Level	TTL compatible into	
	≥ 1 kΩ	
Pulse width	> 400 ns	
Output impedance	50 Ω typical	
Maximum rate	1 MHz	
Fanout	≤ 4 Keysight 33210As	
	(or equivalent)	

Footnotes

- [1] Add 1/10th of output amplitude and offset spec per °C for operation outside the range of 18 to 28 °C
- [2] Autorange enabled
- [3] DC offset set to 0 V
- [4] Spurious output at low amplitude is –75 dBm typical
- [5] Add 1 ppm/°C average for operation outside the range of 18 to 28 °C
- [6] Sine and square waveforms above 3 MHz are allowed only with an "infinite" burst count
- [7] Only available if Option 002 is installed

Measurement Characteristics (continued)

Programming times (typical)			
Configuration times	USB	LAN	GPIB
Function change	120 ms	120 ms	120 ms
Frequency change	2 ms	3 ms	2 ms
Amplitude change	30 ms	30 ms	30 ms
Select user arb	130 ms	130 ms	130 ms
Arb download times	Binary transfer		
(Option 002)			
	USB	LAN	GPIB
2 k points	5 ms	9 ms	10 ms
4 k points	8 ms	15 ms	20 ms
8 k points	14 ms	27 ms	40 ms

General	
Power supply	Cat II
	100 to 240 V @
	50/60 Hz (-5%, +10%)
	100 to 120 V @ 400 Hz
	(± 10%)
Power consumption	50 VA max
Operating	IEC 61010
environment	Pollution Degree 2
	Indoor Location
Operating	0 to 55 °C
temperature	
Operating humidity	5% to 80% RH,
	non-condensing
Operating altitude	Up to 3000 meters
Storage temperature	–30 to 70 °C
State storage	Power off state
memory	automatically saved,
	Four user-configurable
	stored states
Interface	LAN LXI-C Ethernet 10/100
	USB 2.0, GPIB
Language	SCPI – 1993, IEEE-488.2
Dimensions (W x H	I x D)
Bench top	261.1 mm x 103.8 mm
	x 303.2 mm
Rack mount	212.88 mm x 88.3 mm
	x 272.3 mm
Weight	3.4 kg (7.5 lbs)
Safety designed to	UL-1244, CSA 1010
	EN61010
EMC tested to	MIL-461C, EN55011,
	EN50082-1
Vibration and shock	MIL-T-28800, Type III,
	Class 5
Acoustic noise	30 dBa
Warm-up time	1 hour
	

Ordering Information

Keysight 33210A 10 MHz function/arbitrary waveform generator

Accessories included

Operating manual, service manual, quick reference guide, IntuiLink waveform editor software, test data, USB cable, and power cord (see language option).

Options			
Opt. 001	External timebase reference		
Opt. 002	8K-point arbitrary waveform generator		
Opt. A6J	ANSI Z540 calibration		
Opt. AB0	Taiwan: Chinese manual		
Opt. AB1	Korea: Korean manual		
Opt. AB2	China: Chinese manual		
Opt. ABA	English: English manual		
Opt. ABD	Germany: German manual		
Opt. ABF	France: French manual		
Opt. ABJ	Japan: Japanese manual		
Opt. PLG	Continental European		
	power cord		
Other A	Accessories		
34131A	Carrying case		
34161A	Accessory pouch		
34190A	Rackmount kit		
34191A	Dual flange kit, 2U		
34194A	Dual lock link kit		

${\sf myKeysight}$

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/quality

Keysight Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/33210a

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia China Hong Kong India Japan Korea	1 800 629 485 800 810 0189 800 938 693 1 800 112 929 0120 (421) 345 080 769 0800
Japan	0120 (421) 345
	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

0800 001122
0800 58580
0800 523252
0805 980333
0800 6270999
1800 832700
1 809 343051
800 599100
+32 800 58580
0800 0233200
8800 5009286
0800 000154
0200 882255
0800 805353
Opt. 1 (DE)
Opt. 2 (FR)

For other unlisted countries: www.keysight.com/find/contactus (BP-06-16-14)

United Kingdom

Opt. 3 (IT)

0800 0260637

